
NATIONAL INSTITUTES OF HEALTH
DIVISION OF RESEARCH RESOURCES
BIOTECHNOLOGY RESOURCES PROGRAM

SECTION I - RESOURCE IDENTIFICATION

Report Period: Grant Number:

RR-00785
From August 1, 1977 to July 31, 1978 ---------------------------------

------------------------------ ---------------------------
Name of Resource: Resource Address:

Stanford University Stanford University
Medical Experimental Stanford, California
Computer (SUMEX) 94305

--------------------__________I ---------------------------
Principal Investigators: Titles:

Joshua Lederberg, Ph.D. Chairman and Professor

Resource Telephone Number:

(415) 497-5141

Edward A. Feigenbaum, Ph.D. Chairman and Professor
--------------------__________I ---------------------------
Grantee Institution: Type of Institution:

Stanford University Private University

Academic Departments:

Department of Genetics
School of Medicine

Department of Computer Science

Investigators' Telephone Nos.:

Lederberg: (415) 497-5801
Feigenbaum: (415) 497-4079

-------------------------------- --------------------__________I ---------------------------
Name of Institution!s Biotechnology Resource Advisory Committee:

SUPIEX-AIN Executive Committee

Membership of Biotechnology Resource Advisory Committee:
NAM2 TITLE DEPARTMENT INSTITUTION

Saul Amarel, Ph.D. Chairman & Professor Computer Science Rutgers University

Stanley Cohen, M.D. Head

Professor

Div. Clinical Stanford University
Pharmacology School of Medicine

!4edicine,Genetics

Donald Lindberg, M.D. Professor Pathology

i

University of Missouri
Director Information School of Medicine

Science Group
Director Health Care University of Missouri -

Technology Ctr. Columbia

Jack Myers, M.D. University Professor At Large University of Pittsburgh
of Medicine School of Medicine

------------------------------,
Principal Investigators:

Joshua Lederberg, Ph.D.
Chairman and Professor
----------------------------.

Edward A. Feigenbaum, Ph.D.
Chairman and Professor

------------------------------.
Stanford University Official:

Janet P. Jonnson
Sponsored Projects Officer

-----------------------------~

Report Prepared:
May, 1978

Signature:

Date:

/& -*y "i' Y.-P
. . . ;,.

PROGRESS REPORT

SUMEX-AIM Resource Progress Report - Year 05

This annual report covers work performed under NIH Biotechnology Resources
Program grant RR-785 supporting the Stanford University Medical Experimental
computer (SUMEX) research resource for applications of Artificial Intelligence in
Medicine (AIM). It spans the year from Nay 1977 - April 1978.

2 RESOURCE OPERATIONS

2.1 PROGRESS

2.1.1 RESOURCE SUMMARY AND GOALS

The SUMEX-AIM project is a national computer resource with a dual mission:
a) the promotion of applications of artificial intelligence (AI) computer science
research to biological and medical problems and b) the demonstration of computer
resource sharing within a national community of health research projects. The
SUMEX-AIM resource is located physically and administratively in the Stanford
University Medical School and serves as a nucleus for a community of medical AI
projects at universities around the country. SUNEX provides computing facilities
tuned to the needs of AI research and communication tools to facilitate remote
access, inter- and intra-group contacts, and the demonstration of developing
computer programs to biomedical research collaborators.

Artificial Intelligence research is that part of Computer Science concerned
with the symbol manipulation processes that produce intelligent action (1). By
‘lintel 1 igent action” is meant an act or decision that is goal-oriented, is
arrived at by an understandable chain of symbolic analysis and reasoning steps,
and utilizes knowledge of the world to inform and guide the reasoning.

Some scientists view the performance of complex symbolic reasoning acts by
computer programs as the sine qua non for artificial intelligence programs, but
this is necessarily a limited view.

(1) For recent reviews to give some perspective on the current state of AI,
see: (i) Boden, M., “Artificial Intelligence and Natural Man,” Basic Books, New
York, 1977; (ii) Feigenbaum, E-A., “The Art of Artificial Intelligence: Themes
and Case Studies of Knowledge Engineering,” Proceedings of the Fifth
International Conference on Artificial Intelligence, 1977; (iii> Ninston, P-H.,
“Artificial Intel 1 igence”, Addison-Wesley Pub1 ishing Co., 1977; and (iv) Nilsson,
N.J., “Artificial Intelligence”, Information Processing 74, North-Holland Pub.
co. (1975). An additional overview of research areas and techniques in AI is
being developed as an “Artificial Intelligence Handbook” under Professor E, A.
Feigenbaum by computer science students at Stanford (see page 123 for a status
report and Appendix I for a current outline).

J. Lederberg C E. Feigenbaum 2

RESOURCE SUMMARY AND GOALS Section 2.1.1

Another view unifies AI research with the rest of computer science. It is
a simplification, but worthy of consideration. The potential uses of computers
by people to accomplish tasks can be “one-dimensionalized” into a spectrum
representing the nature of the instructions that must be given the computer to do
its job; call it the WHAT-TO-HOW spectrum. At the HOW extreme of the spectrum,
the user supplies his intelligence to instruct the machine precisely HOW to do
his job, step-by-step. Progress in computer science may be seen as steps away
from that extreme “HOW” point on the spectrum: the familiar panoply of assembly
languages, subroutine libraries, compilers, extensible languages, etc. illustrate
this trend.

At the other extreme of the spectrum, the user describes WHAT he wishes the
computer9 as his instrument, to do for him to solve a problem. He wants to
communicate WHAT is to be done without having to lay out in detail all necessary
subgoals for adequate performance yet with a reasonable assurance that he is
addressing an intelligent agent that is using knowledge of his world to
understand his intent, complain or fill in his vagueness, make specific his
abstractions, correct his errors, discover appropriate subgoals, and ultimately
translate WHAT he wants done into detailed processing steps that define HOW it
shall be done by a real computer. The user wants to provide this specification
of WHAT to do in a language that is comfortable to him and the problem domain
(perhaps English) and via communication modes that are convenient for him
(including perhaps speech or pictures).

The research activity aimed at creating computer programs that act as
‘lintel 1 igent agents” near the WHAT end of the WHAT-TO-HOW spectrum can be viewed
as the long-range goal of AI research. Historically, AI research has been the
primary vehicle for progress toward this objective, although a substantial part
of the applied side of computer R&D has related goals, if an often fragmented
approach. Unfortunately, workers in other scientific disciplines are generally
unaware of the role, the goals, and the progress in AI research. Current1 y
authorized projects in the SUMEX community are concerned in some way with the
design of ‘lintel 1 igent agents” applied to biomedical research. The tangible
objective of this approach is the development of computer programs which, using
formal and informal knowledge bases together with mechanized hypothesis formation
and problem solving procedures, will be more general and effective consultative
tools for the clinician and medical scientist. The systematic search potential
of computerized hypothesis formation and knowledge base utilization, constrained
where appropriate by heuristic rules, empirical data, or interactions with the
user, has already produced promising results in areas such as chemical structure
elucidation and synthesis, diagnostic consultation, and mental function modeling.
Need1 ess to say, much is yet to be learned in the process of fashioning a
coherent scientific discipline out.of the assemblage of personal intuitions,
mathematical procedures, and emerging theoretical structure of the “analysis of
anal ysi s” and of problem solving. State-of-the-art programs are far more
narrowly specialized and inflexible than the corresponding aspects of human
intelligence they emulate; however, in special domains they may be of comparable
or greater power, e.g., in the solution of formal problems in organic chemistry
or in the integral calculus.

An equally important function of the SUMEX-AIM resource is an exploration
of the use of computer communications as a means for interactions and sharing
between geographically remote research groups engaged in biomedical computer

J. Lederberg & E. Feigenbaum

Section 2.1.1 RESOURCE SUMMARY AND GOALS

science research. This facet of scientific interaction is becoming increasingly
important with the explosion of complex information sources and the regional
specialization of groups and facilities that might be shared by remote
researchers (see Appendix II on page 223). Our community building role is
based upon the current state of computer communications technology. While far
from perfected, these new capabilities offer highly desirable latitude for
collaborative linkages, both within a given research project and among them.
Several of the active projects on SUMEX are based upon the collaboration of
computer and medical scientists at geographically separate institutions; separate
both from each other and from the computer resource. The network experiment also
enables diverse projects to interact more directly and to facilitate selective
demonstrations of available programs to physicians, scientists, and students.
Even in their current developing state, communication facilities enable effective
access to the rather specialized SUMEX computing environment and programs from a
great many areas of the United States (even to a limited extent from Europe). In
a similar way, the netuork connections have made possible close collaborations in
the development and maintenance of system software with other facilities.

As we complete the first 5-year term of the SUMEX-AIM resource grant, we
can report that our initial technical task has been achieved. We have collected
and implemented an effective set of hardware and software tools to support the
development of 1 arge, complex AI programs and to facilitate communications and
interactions between user groups. We have substantially increased the roster of
user projects (from an initial 5) to 15 current major projects plus a group of
pilot efforts. Many of these projects are built around the communications
network facilities we have assembled; bringing together medical and computer
science collaborators from remote institutions and making their research programs
available to still other remote users. As discussed in the sections describing
the individual projects, a number of the computer programs under development by
these groups are maturing into tools increasingly useful to the respective
research communities. The demand for production-level use of these programs has
surpassed the capacity of the present SUMEX facility and has raised the general
issues of how such software systems can be optimized for production environments,
exported, and maintair,ed.

A number of significant events and accomplishments affecting the SUMEX-AIM
resource occurred during the past year:

11 Professor Lederberg has been the principal investigator and chairman of
the SUMEX-AIM Executive Committee during the past 5 years. He has now
been named president of Rockefeller University, effective July 1, 1978.
He will be succeeded as SUMEX principal investigator by Professor Edward
Feigenbaum, who is chairman of the Stanford Computer Science Department
and has been closely associated with the resource since its inception.
The coordination of project activities with medical research is the
responsibility of Professor Stanley Cohen, Dr. Lederberg’s successor as
chairman of the Department of Genetics in the Stanford Medical School.
Professor Lederberg will maintain close ties with these activities as
chairman of the SUMEX-AIM Executive Committee and through his plans to
encourage AI applications work at Rockefeller.

2) The SUMEX renewal application submitted last year at this time has been
reviewed and approved by the National Advisory Research Resources Council.

J. Lederberg 8 E. Feigenbaum

RESOURCE SUMMARY AND GOALS Section 2.1.1

Our proposed renewal term of 5 years was reduced to 3 years in view of the
management changes in progress.

3) We have made a number of upgrades to the SUPlEX faci 1 i ty hardware. and
software systems to enhance throughput and to better control the
allocation of resources. We are also establishing a connection to the
commercial TELENET network to explore more cost-effective ways to meet
community communications needs.

41 We have made progress in the investigation of alternative schemes for the
export of programs. A demonstration of the machine-independent MAINSAIL
system is nearing completion for the initial set of target machines. The
DEC 2020 system, formally announced early this year, provides a relatively
inexpensive software-compatible machine for export or expansion of
computing capacity for small research groups.

5) The progress of SUMEX-AIM user projects in the development of their
respective programs is reported by the individual investigators. We have
worked hard to meet their needs and are grateful for their expressed
appreciation.

J. Lederberg & E. Feigenbaum

Section 2.1.1 RESOURCE SUMMARY AND GOALS

Valediction 1 Personal remarks & J. Lederberq

While Ed Feigenbaum and I cheerfully accept the full responsibility that is
entailed by our roles as co-investigators of this resource project, we are
embarrassingly aware how much of the effort has been the work of others. Cho ices
for praise are always invidious, but I have no difficulty in singling out Tom
Rindfleisch as the one person who deserves the most particular credit for the
success of this program. His technical insight and finesse in the system design
and implementation, and in the management of the resource staff are measured by
the visible efficiencies and clarity of documentation of the resource. He is
also preeminently responsible for the drafting of these reports and for managing
our fortunes through all the complexities of federal and university
accountability, and our obligations to local and national users.

Tom would be the first to insist on acknowledging the dedicated support of
the administrative, programming and engineering staffs: I mention Carole Miller
and Karen Carpenter, Rainer Schulz and Andy Sweet-, and Nick Veizades as
representatives of the several groups of veterans who have been part of SUMEX-AIM
from its inception, and of the most conscientious team of my experience.

For my own role, I have leaned heavily on my friend and associate, Ed
Feigenbaum, and it is gratifying to be so confident that the work we started
together in building SUMEX-AIM will continue under his able stewardship. Elliott
Levinthal and Bruce Buchanan did a great deal to make all this possible, and to
make the tasks that Ed and I will have taken on not just manageable but fun.
Carl Djerassi, in chemistry, was an indispensable fomenter of the scientific
collaborations. Stan Cohen is making an equally great contribution, both by
succeeding me as chairman of the genetics department, and by his continued
promulgation of MYCIN and by serving as coordinator for medical school research
interests in SUMEX.

But this list would eventually embrace a large part of Stanford University,
a network of personal and interdisciplinary connections that constitutes a
seamless web, a treasure for my own experience and recollection, -- but one that
is perforce hard to fairly acknowledge, and even harder to sever myself from.

Fortunately, the communications net offers a way to soften that severance,
and I will seek every opportunity to use it to stay in the closest contact with
the affairs of SUMEX-AIM that the duties of my new situation allow. My continued
association with Stanford and with SUMEX-AIM ought to be a self-exemplifying
demonstration of the capabilities for community-building and for sustaining the
human relationships in scientific effort that have been our highest hopes for
these new, high technologies.

The realism of these expectations has been substantially tested already in
the way that the Executive Committee of SUMEX-AIM, the user community, and Bi 11
Baker and his colleagues at NIH/BRP, have been able to work together effectively
and constructively in making this enterprise truly a national resource.

I look forward to continuing to be a part of a team like that!

J. Lederberg C E. Feigenbaum 6

TECHNICAL PROGRESS Section 2.1.2

2.1.2 TECHNICAL PROGRESS

The following material covers SUMEX-AIM resource activities over the past
year in greater detail. These sections outline accomplishments in the context of
the resource staff and the resource management. Details of the progress and
plans for our external collaborator projects are presented in Section 4
beginning on page 61,

2.1.2.1 FACILITY HARDWARE

Over the past year9 several significant changes have been made to the SUMEX
hardware configuration and associated system software:

1) Core memory was doubled by adding 256K words
2) The file and tape system hardware was upgraded
3) A connection to TELENET is being implemented

The memory and file/tape upgrades have substantially improved system throughput
and efficiency as discussed below. The TELENET connection is being established
for evaluation as a possibly more cost-effective means for meeting community
communication needs (see page 16). The current system hardware configuration is
diagrammed in Figure 1 on page 9.

INTRODUCTION

The SUHEX-AIM facility has been operating at capacity in terms of prime-
time computing throughput and user file space for the past 2 years as documented
in our annual reports (see for example pp 4-8 of the 1976 report). This
condition has constrained the growtfi of the AIM community and our ability to
bring AI programs nearing operational status in contact with the potential
external user communities while continuing to support on-going program
development efforts. We have taken active steps to try to transfer prime time
loading to evening and night hours including shifting personnel schedules
(particularly for Stanford-based projects), to control the allocation of CPU
resources between various user communities and projects, and to encourage jobs
not requiring intimate user interaction to run during off hours by developing
batch job facilities. Despite these efforts, our prime time loading has remained
very high. Perhaps the most significant effect of the resulting poor response
time is the deterrence of interactions with medical and other professional
collaborators experimenting with available AI programs, whose schedules cannot be
adjusted to meet computer loading patterns (see for example the MYCIN report in
Section 4.2.6 on page 163).

Two years ago, the Executive Committee gave approval for the augmentation
of SUMEX-AIM computing capacity by adding a second CPU. The decision for the CPU
was made as a trade-off betueen adding memory and/or CPU to maximize capacity
enhancement within the resources available (see the 1976 annual report for a
discussion of these trade-offs). We implernented the dual processor system in the
spring of 1976 and brought it on line in June. The additional capacity was put
to use very quickly as reflected in system usage and loading data summarized in

7 J. Lederberg & E. Feigenbaum

Section 2.1.2.1 TECHNICAL PROGRESS

Figure 6 through Figure 8. With the common criterion that users have pushed
both the single and dual processor systems to the 1 irnits of useful work in terms
of prime time responsiveness, it is clear that the second processor substantially
increased throughput. The “tolerable” peak load average increased, the number of
jobs on the system,increased, and the number of delivered CPU hours increased.
At the same time (as predicted) the overhead per machine rose dramatically as
shown in Figure 9 and Figure 10. The overhead increases came principally in the
category of I/O wait (total scheduler time and time waiting for a runnable job to
be loaded in core) and in the time processing pager traps. Another factor, not
explicitly shown in these data (because we only have a 1 msec clock), is the
added time spent at interrupt level servicing drum swapping. This adds another
lo-15% estimated overhead.

After the dual processor augmentation, SUMEX-AIM computing capacity again
became overloaded. This continuing saturation has raised serious discussion
about the scope of computing needs of the AIM community and possible
justification of additional PDP-10 scale machines to be added to the AIM network.
Several specific proposals have been submitted for additional user nodes. We
expect additional capacity to be available through the Rutgers resource by the
end of this summer and support expansions at other AIM nodes as justified by
local and community needs. From the SUMEX viewpoint, we have attempted to do
everything feasible and economically justified within current budgets to maximize
the use of the existing hardware for productive work. After the dual processor
augmentation, the obvious remaining CPU resource to be tapped was to reduce the
high dual processor overhead.

A parallel saturation problem existed for a long time in file space
commitments. We had queued requests from numerous projects for increases in file
space including INTERNIST, Higher Mental Functions, Language Acquisition
Modeling, DENDRAL, Chemical Synthesis, MYCIN, and several pilot projects. We did
not have additional space to allocate to meet these needs and our DEC RP-1OC
controller configuration was full (7 drives on-line and one available for
backup). We had taken an active role in trying to optimize use of available
space hy limiting the total space available to projects, limiting the number of
versions of experimental files kept on the system, and encouraging the use of
tape or Datacomputer archive services for files not needed on-line routinely. We
still were unable to adequately provide for the growing needs of existing
projects or meet the bare space needs of new projects getting started.

The following plan was presented to the Executive Committee to increase the
capacity of the SUMEX facility configuration by 1) adding memory to optimize dual
processor utilization and 2) redesigning the file system (including the tapes
used to backup and archive user files) to meet increased demands within up-to-
date technology. This plan was approved in June 1977 and implemented in
September 1977.

J. Lederberg & E. Feigenbaum

256R Words

XWEX tkmory
O-l '%:

DEC Yenory DTC Ycmory DEC Mwory
,. XF-1CI ‘T-! r)

256R Words
XF-10 EIF-10

64K !Gcrc!s 64K 1:ords 64R IJords 64K Words
i

I I I I ! I I 1 ! I I
I I I Y

I I I I I ! I I 1 I I I
1 I I

r. I
! I I

I I I

DEC h!emory
>!ultiplexor

WI-! oc

I
Syst Concepts
S/\-LO DEC/IRX-

Interface
I

CL31conp Disk i-l Contrnllcr
1035

I
I

Cnlcomp Tape
Controller

104OA

Total 156X Words

Calcomp a T3pe
347-A

Dual DECtapc D!:Ctnpc
Drives - Controller -
TU-56 TD-10

1

\&73!2DS/ IA-7312% J

Totcl 1.7M Words

-, Scanner
'64 Lines tot31
i,ocnl dial-ups
aad hardlines

Figure 1. SLJMEX-AIM CO?PZTER CONFIGURATION (9177)

Section Z-1.2.1 TECHNICAL PROGRESS

MEMORY AUGMENTATION

There is a close interaction between memory size, CPU capacity, and
secondary swapping storage in determining the performance of a demand-paged
system like TENEX (see 1976 annual report pp 4-10). Our system as initially
designed was quite well balanced in these respects. As the SUMEX-AIM computing
load reached capacity, the choices for augmentation dictated either memory or CPU
as we had insufficient funding to augment both. We chose CPU as the most user-
effective means of providing more capacity at that time. However, as pointed out
then, the added CPU power has the effect of increasing the system overhead in
order to manage the increased number of jobs using the system within available
memory. This shows up in increased pager trap time, interrupt-handling overhead
for drum swaps, requirements for additional secondary swap space to accommodate
the added jobs, and I/O wait time to fetch a runnable job into core as
illustrated in Figure 9 and Figure 10.

Recorded data on dual processor performance show that, during prime time
loading, the overhead in I/O wait time, pager trapping, and drum interrupt
handling effectively amounted to about 40-50% of the second CPU (actually all of
the I/O traffic is on one of the machines whereas other overhead for paging and
I/O wait is distributed between them). This lost capacity was recoverable by
adding memory. The effect of increasing memory is to allow more jobs in core at
once (larger "balance set") and larger working sets to reduce overhead factors.
This not only improves efficiency but smooths out user interaction since the
larger balance set makes it more likely that pages for a given job will be in
core when needed for teletype service. The 256K memory configuration only
afforded a balance set of 4-5 jobs, so that with a load average of 7-10 during
prime time, about 4-5 jobs had to be completely swapped out at a given time and
hence could not get any service. The larger balance set means fewer jobs swappec
out for a given load average.

The added memory size also allows more effective use of slower swapping
space, particularly with the parallel disk system upgrade to the faster 3330
technology as outlined below. Having more jobs in the balance set makes it more
likely that a runnable job is there and reduces the page fault rate so that
swapping between memory and the slower store can occur without loss. Time
previously wasted as I/O wait to get a disk-swapped job back into memory is
reduced.

We considered a number of memory vendors and also looked into a new "slow"
AMPEX memory which trades speed (3 usec versus 1 usec) for capacity (lOOOK words
versus 256K words). This memory could be configured either in the form of a
random access memory (RAM) or a block transfer ("drum-like") device. In essence
the "block transfer" mode would add another layer in the hierarchy of storage
intermediate between drum and high speed memory. We felt this type of "drum"
memory would not be the most advantageous solution as the system was already
burdened waiting for runnable jobs to execute and handling a high overhead of
page swapping. The CPU time for the management of page swapping is non-trivial
and, based on measurements of swapping activity, the overhead in managing storage
on the KI-10 rivals the rotational latency of the drum so the fast swapper would
not do that much good. The dominant factor in the overhead is that we had a
relatively small executing store for our processing capacity so that under heavy
loads the system thrashes trying to service runnable jobs for all the users.

J. Lederberg G E. Feigenbaum 10

TECHNICAL PROGRESS Section 2.1.2.1

Similarly, configuring such slow memory as RAM for our non-cache KI-10's
would ~1 ow the processors down by a factor of 3 when executing code from the slow
memory. It would be equally costly to rearrange pages between fast and slow
memory. Without a special transfer device, the CPU would have to do the
transfers limited by the slow memory speed, For a cache system (like the KL-101,
this problem may be overcome by the firmware management of the movement of active
memory locations between the very fast cache memory and the slower memory (4-word
parallel transfers).

Thus we felt the most effective remedy was more high speed memory. We
chose AMPEX memory from among the vendors reviewed as the best trade-off between
performance, price, packaging, and maintainability. The additional 256K of
memory was brought on-line in September 1977. From the data shown in Figure 9
and Figure 10, it is clear that the predicted reduction in system overhead was
immediately achieved. The following table shows measurements of average
instruction times comparing our AMPEX and DEC MF-10 memories. Also included for
comparison are data for a Systems Concepts memory installed at the IMSSS KI-10
facility at Stanford:

AMPEX DEC MF-10 SC MF-10
MOVE1 1.20 1.21 0.97
MOVE 1.54 1.64 1.24

These data give the time in microseconds to execute the instructions shown based
on the DEC timing diagnostic and normalizing the times to a "standard" 15 foot
memory cable length. The MOVE1 instruction shous the relationship between the
basic memory access times and the MOVE instruction illustrates the effects of KI-
10 "look ahead" with overall memory cycle time. Currently our AMPEX memory is
timed to have essentially the same access time as the MF-10's but it is actually
capable of somewhat faster operation. We are planning to attempt to reconfigure
the memories this summer to take better advantage of the AMPEX speed. This may
recover about 80 nanoseconds per access. This will still not bridge the timing
difference between the AMPEX and the Systems Concepts memories. Systems Concepts
offers a technically advantageous memory in terms of speed. Our choice of
vendors was based on our own evaluation of issues like resale potential,
maintainability, and management responsiveness, taking into account our
experience with Systems Concepts in purchasing their disk channel interface (see
below).

It should also be mentioned that the installation of the additional 256K of
memory required modifications to the MX-10 memory multiplexor to accommodate 22-
bit addresses and to the TYMBASE to be able to operate on a KI-10 style memory
bus supporting more than 256K of memory.

DISK/TAPE RECONFIGURATION

Disk technology has changed rapidly in recent years. At the time we bought
the initial SUMEX configuration, taking into account the discount DEC gave on the
system purchase and maintainability, the DEC RP-03 system we bought was the best
choice. Since then double-density 3330 technology has become well established
(prices for IBM-compatible equipment were cut almost in half in 1976 alone!) and
even higher densities are coming along. Given the relatively low incremental

11 J. Lederberg & E. Feigenbaum

Section 2.1.2.1 TECHNICAL PROGRESS

cost (for used equipment), we added RP-03 drives until filling the capacity of
the controller. But with the added dernands of community projects. a better long
term solution necessitated upgrading from the RP-03 technology. Newer devices
offer more economical future growth, and faster transfer rates thereby further
decreasing system overhead.

Our tape system was in an even more advanced part of the age curve. We
have not emphasized individual user tape services at all but tapes are critical
to system operation for file system backup and user file archiving. We minimized
the initial investment in tape drives to the advantage of other parts of tfie
system. To accommodate the larger file system and to improve system operations
and efficiency, the upgrade in file systern also required a parallel upgrade in
tape service. An additional advantage to upgrading the tape system was to move
the I/O interface from the I/O bus to a direct memory interface thereby reducing
system interrupt loading during prime time tape/file system operations.

The most attractive approach to file/tape system upgrade was to adapt a DEC
memory port to look like an IBM selector or block multiplexer channel and then to
take advantage of the substantial price competition in the IBM-compatible
peripheral market. The capacity of a double-density 3330 disk drive is equal to
4 RP-03’s. Thus bringing 3 new drives on line almost doubles the on-line
capacity. After investigating alternative vendors, we selected a system using a
System Concepts SA-10 channel adaptor, Calcomp 235-11 disks, and Calcomp 347A
tapes. This system was installed and brought on line at the same time as the
memory augmentation in September 1977.

'This system has substantially alleviated file capacity pressure and made
possible much smoother backup operations. With the faster tape speed, we no
longer take the system down for pack copies Sunday morning but rather do a full
file system dump to tape. Similarly during the week we do incremental dumps back
to the previous full dump each day to give quite good backup coverage. We have
experienced no major technical problems with the new file/tape system; more
details about impact on system software is given in a later section.

Unfortunately, we have experienced many frustrations dealing with Systems
Concepts management in contrast to the high technical quality of their hardware.
There remain several parts of the SA-10 adaptor that have not been delivered
including full documentation, maintenance training, cabling to replace that which
we borrowed for installation, and the device indicator panel. This experience
led us not to consider Systems Concepts for memory. Few such memories have been
delivered and it is not clear that we could depend on future maintainability. On
the other hand, support for the SA-10 is secure in that many are in the field
with excellent service records and alternative sources exist for SA-10
maintenance through Calcomp, DEC, or TYMSHARE.

2.1.2.2 SYSTEM SOFTWARE

MEMORY EXPANSION ANO FILE/TAPE UPGRADES

The addition of 25GK of memory and the upgrades of our file/tape system
necessitated a number of changes in the monitor. TENEX had not fully anticipated
memory addresses longer than 18 bits and so those places where half-word

J. Lederberg & E. Feigenbaum 12

TECHNICAL PROGRESS Section 2.1.2.2

addresses were assumed had to be fixed. The RP-1OC disk service and TM-10 tape
service code had to be replaced by code that produces the appropriate IBM channel
commands. We imported the "standard" BBN SA-10 disk/tape service and
incorporated it in our dual processor system. Despite the substantial amount of
work required to incorporate this code into our system, the new hardware and
monitor came up smoothly on 9/l/77.

We have encountered a number of bugs during the year, particularly in the
disk service. The most troublesome one resulted in a deadlock between command
retry attempts from the CPU and a busy controller state. The 3330 recovery
procedure implemented in the BBN code appeared to track exactly that used in
IBM's most recent VS releases. Nevertheless infrequently during internal
controller error correction attempts, we found the system hung in a loop with the
controller, when trying to restart commands queued at the time of the error. It
appears the problem may be in the Calcomp controller microcode but we have not
been able to get enough information from Calcomp to confirm that. Meanwhile we
have constructed a software work-around to detect the loop when it occurs and to
reset the disk channel before proceeding.

'The new hardware had other ramifications for system software as well.
DEC's diagnostic system is designed to run off of their disk or magnetic tape
systems. This capability was lost as a result of the change from DEC hardware so
that diagnostics had to be loaded from slow DECtape units. We have invested
considerable effort in bringing system diagnostic facilities back up to a
workable level; borrowing programs others had written and implementing new ones
where needed. We have implemented a stand-alone facility to load SAV files from
the TENEX file system, incorporating full TENEX name recognition features. This
means that programs can be manipulated and kept on-line in the time-sharing file
system and then loaded as needed when the machine is down or in stand-alone mode.
This also provides an easier way to reload the monitor. We have written a fast
disk pack copy routine for the 3330 packs and have improved the SA-10 diagnostic
package to check out 512K of memory and to ensure safer testing of disk drives in
the presence of live file system packs.

Also with 1600 BP1 tapes available changes were necessary to the tape
service and TOPS-10 compatibility package to accommodate DEC's extended magnetic
tape UUO's as well as to be able to fully use the byte packing facilit ies of the
SA-10 and IBM drives.

We cant inue to work to improve the efficiency of the system and its
effectiveness in al locating valuable resources. We have implemented a high
priority hardware clock to sample monitor and user mode program counter locations
to find places of abnormally high activity and perhaps inefficiency. This has
pointed out several "hot spots" in routines where it was obvious on other grounds
that a substantial amount of time is spent (e.g., drum service, KI page handling
and teletype service) but there are no clear solutions to these problems with the
current hardware.

13 J. Lederberg & E. Feigenbaum

approximate this ideal. In some systems a “p
a group of users is allocated some percentage
consumes more than that amount during the cyc
scheduled until other groups catch up. Meant
terminals and receive VERY slow response, not

ie-sl ice” scheduler is used wherein
of the machine and if that group

le interval, its jobs are not
ime, those users sit at their

knowing when things will let up so
they can effectively compute again. This type of approach does keep the system
from trying to run too many jobs at once but it does not solve the problem of
EFFECTIVELY MANAGING USERS’ TIME.

14

TECHNICAL PROGRESS Section 2.1.2.2

SYSTEM LOADING CONTROLS

We previously implemented a form of “soft” CPU allocation control in the
moni tar, assisted by a program which adjusts user percentages for the scheduler
based on the dynamic loading of the system. The allocation control structure
works based on the scheduler queue system and takes account of the a priori
allocation of CPU time and that actually consumed. Our TENEX uses a hierarchy of
five queues for jobs ranging from highly interactive jobs requiring only small
amounts of CPU time between waits to more CPU intensive jobs which can run for
long periods without user interaction. These interactive queues (text editing,
etc.) are scheduled at highest priority without consideration of allocation
percentages. If nothing is runnable from the high priority queues, the CPU-bound
queues are scanned and jobs are selected for running based on how much of their
allocated time has been consumed during a given allocation control cycle time
(currently 100 seconds>. If no such jobs are runnable, then those that have
received their allocation of CPU time already are scheduled based on how much
they are over allocation and how long they have uaited to be run again. This
system is not a reservation system in that it does not guarantee a given user
some percentage of the system. It allocates cycles preferentially, trading off 2
priori allocations with actual demand but does not waste cycles.

This scheduli,ng scheme does not deal with the problems of system
overloading during peak periods. At such times (mid-morning and mid-afternoon
especially), one observes what has been termed “the tyranny of time-sharing”.
System efficiency and user response time degrade because the system is trying to
serve more jobs than it has reasonable resources for. Users sit at their
terminals waiting for the cycles they need to work effectively but there are not
enough to go around. Ideally the system should have a response time keyed to a
typical human interactive response interval. This imp1 ies a 1 imit on the number
of active job slots that the system can accommodate simultaneously in order to

We have attempted to control system overloading in a somewhat different way
to better manage user time and to allow us to better apportion system capacity
between communities and projects during heavy load. Each project gets its pro
rata share of the active job slots the system can accommodate. Rather than allow
many users to ineffectively vie for each project’s slots (as in the pie-slice
system), we ask selected users within each group to restrict their use for
periods of l/2 hour so that those remaining can work effectively within the
project aliquot. Allocation of active job slots is made on the basis of relative
community and project percentage allocations (assigned by the AIM Executive
committee). Within each project slots are allocated either on a round-robin
basis or taking into account optional project priorities among users. Under
overload conditions, active jobs outside of the available slots are asked to slow
down, thereby holding the load within tolerable limits. If such jobs do not
voluntarily cooperate, they may be forced to comply.

J. Lederberg & E. Feigenbaum

TECHNICAL PROGRESS Section 2.1.2.2

An overload condition is defined to be one in which the overall load
average exceeds a threshold (currently 7.51, significantly more jobs are runnable
than there is core for, or excessive page faulting is occurring. Outside of
periods of overload, the previous "soft" percentage scheduling scheme is applied.
Also thresholds for overload conditions may be dynamically adjusted to assure
good system response during a demo.

This system has been in operation for approximately one month during which
time we have experimented with various threshold adjustments and observed its
effects on user behavior. During this early period, we have not placed any
controls on system use by the AIM community projects since they have historically
been below their quota for system use. It is still early to tell quantitatively
what its effect will be; system usage fluctuations are such that we uill have to
observe operations for several months before drawing conclusions. However,
qualitatively it seems to be holding system loading within tolerable bounds and
allocating capacity as apportioned between the various communities and projects.

OTHER ENHANCEMENTS

Other areas of system software development include the EXECutive program,
the BSYS program for file archiving and retrieving, the printer spoolers, the
CHECKDSK program for verifying file system integrity, and numerous smaller
utility extensions and bug fixes. We have continued to improve the EXEC in such
areas as the DIRECTORY command (to display last file reader and temporary files),
the MAP command (to handle long files), a new INITIALIZE command (to restart the
EXEC after errors), smoothing out multi-directory search paths using features of
the new GTJFN, adding wild card and question mark facilities to the file
retrieval INTERROGATE command, making the command for changing file protection
more mnemonic, and restoring terminal modes correctly after a forced detach
(e.g., uith a dropped line or network disconnect).

We have added a facility to the BSYS program to automate the restoration of
requested files from tape, avoiding the earlier error-prone and time-consuming
typing of individual restore commands. We have completely rewritten the line
printer spoolers to more efficiently and uniformly handle the local and remote
printers, to add facilities for "unlisting" a file listed by mistake, and
improving the marking of listing boundaries to ease operator separation of
listings for various users.

We have imported a new version of CHECKDSK initially written at BBN and
have incorporated local facilities for more extensive file system integrity
checking. This version presorts file index block addresses and scans for errors
using more sequential disk I/O. Several forks are started, one for each drive.
These keep the disk channel as busy as possible while performing the check
computations. This improvement has reduced the time to scan the file system from
20 to 6.5 minutes.

15 J. Lederberg & E. Feigenbaum

Section 2.1.2.3 TECHNICAL PROGRESS

2.1.2.3 NETWORK COMMUNICATION FACILITIES

A highly important aspect of the SUMEX system is effective communication
with remote users. In addition to the economic arguments for terminal access,
networking offers other advantages for shared computing. These include improved
inter-user communications, more effective software sharing, uniform user access
to multiple machines and special purpose resources, convenient file transfers,
more effective backup, and co-processing between remote machines. Until now, we
have based our remote communication services on two networks - JYMNET and
ARPANET. These uere the only networks existing at the start of the project which
allowed foreign host access. Other commercial network systems (notably JELENEJ)
have come into existence and are growing in coverage and services.

Users asked to accept a remote computer as if it were next door will use
local telephone call to the computer as a standard of comparison. Current
network terminal facilities do not quite accomplish the illusion of a local ca
Data loss is not a problem in network communications - in fact with the more
extensive error checking schemes, data integrity is higher than for a long
distance phone link. On the other hand, networking relies upon shared communi
use of telephone lines to procure widespread geographical coverage at
substantially reduced cost. However, unless enough total line capacity is

a

11.

tY

provided to meet peak loads, substantial queueing and traffic jams result in the
loss of terminal responsiveness. Limited responsiveness for character-oriented
JENEX interactions continues to be a problem for network users.

TYMNET:

Networks such as JYMNET are a complex interconnection of nodes and lines
spanning the country (see Figure 2 on page 18). The primary cause of delay in
passing a message through the network is the time to transfer a message from node
to node and the scheduling of this traffic over multiplexed lines. This latter,
effect only becomes important in heavily loaded situations; the former is always
present. Clearly from the user viewpoint, the best situation is to have as few
nodes as possible between him and the host - this means many interconnecting
lines through the network and correspondingly higher costs for the network
manager. TENEX in some ways emphasizes this conflict more than other time-
sharing systems because of the highly interactive nature of terminal handling
(e.g., command and file name recognition and non-printing program commands as in
text editors or INTERLISP). In such instances, individual characters must be
seen by the host machine to determine the proper echo response in contrast to
other systems where only "line at a time" commands are allowed. We have seen
little improvement in TYMNET service over the past year although the cost of
service has risen sharply. We purchase TYMNET services through a volume contract
the National Library of Medicine has with TYMNET. The cost has gone from
approximately 82.90 to 46.09 per connect hour. Because of this increase, we are
investigating alternative sources of network service; in particular TELENET.

We have had a number of technical problems with the TYMNET this past year.
Internally they changed some of the protocol involved in the TYMBASE connection
we use. They neglected to tell us about these changes though and the problems
that resulted were very hard to track down. From the user viewpoint, connections
were dropped frequently. From the system viewpoint, we could not tell if the

J. Lederberg & E. Feigenbaum 16

TECHNICAL PROGRESS Section 2.1.2.3

problems were subtle results of the recent memory and file system hardware
change. That change required a modification in the TYMBASE to accommodate the
new memory bus conventions. This took months to isolate but the TYMNET interface
is finally running reliably again after much user frustration.

ARPANET:

Current ARPANET geographical and logical maps are shown in F
Figure 4 on page 19. Consistent with agreements with ARPA and the
Communication Agency, we are enforcing a policy that restricts the
to users who have affiliations with ARPA-supported contractors and
system/software interchange with cooperating JENEX sites. We have
good working relationships with other sites on the ARPANET for syst

gure 3 and
Defense
use of ARPANET

maintained
em backup and

software interchange. Such day-to-day working interactions with remote
facilities would not be possible without the integrated file transfer,
communication, and terminal handling capabilities unique to the ARPANET.

TELENET

We recognize the importance of effective communication facilities for
SUMEX-AIM users and are continuously looking for ways to improve our existing
facilities. A year ago we did some preliminary investigations of TELENET
facilities that have been rapidly expanding this past year (see Figure 5 on page
21). BBCN has hooked one of their TENEX systems up to TELENET and whereas we
did not have the same quantitative tools we have for measuring response on the
TYMNET, we observed TELENET delays at least as long as those encountered on
TYMNET. We did the reverse experiment by using long distance telephone to
connect from the TELENET node in Washington, D.C. to the SUMEX machine in
California and observed the same sort of delays reaching several seconds per
character. The TELENET has many attractive features in terms of a symmetry
analogous to that of the ARPANET for terminal traffic and file transfers and
being a commercial network, it does not have the access restrictior.s of the
ARPANET. As indicated above, the cost of using the TYMNET has increased this
past year so that TELENET rates appear to be substantially lower for supporting
community communication services. The National Library of Medicine has a
contract with TELENET which includes significant cost advantages through
combining our use with NLM use to achieve a high volume discount. As a result of
discussions with the AIM Executive Committee and BRP, we are in the process of
implementing an experimental connection to TELENET with the view of moving SUMEX
users to that service if technically effective.

17 J. Lederberg & E. Feigenbaum

--.. CArIADA
---a.-.._

“1 “A I :-.. “.-...i lWEXICO

Figure 2. TYMNET Network Map

ARPANET GEOGRAPHIC MAP, MARCH 1978

TYMSHARE -

SCOTT

LONDON

+s+- SATELLITE CIRCUIT
0 IMP
IJ TIP
n PLURIBUS IMP

(NOTE: THIS MAP DOES NOT SHOW ARPAk EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES
l

W

Figure 3. ARPANET Geographical Network Map

ARPANET LOGICAL MAP, MARCH 1978

PDP- 10

PLI

HAWAII \

HOFFETT LBL

POP-IO

ILLIAC-Ip

*
STANFORD YSUMEX ,

POP-II

PLI
SCRL

‘YMSHARE

n

IS.122 AF;bLDpell (TEXAS

0 IMP

0 TIP

& PLURl8US IMP

m SATELLITE CIRCUIT

Q VERY DISTANT HOST

Figure 4.

CDC7600

GUNTER MITRE SDAC

PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION
OF THE NETWORK ACCORDING TO THE BEST INFORMATION
OBTAINABLE. NO CLAIM CAN BE MADE FOR ITS ACCURACY

HOST COMPUTER CONFIGURATION SUPPLIED BY THE NETWORK
INFORMATION CENTER

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY 1 HOST NAMES

ARPANET Logical Network Map

TELEMET’ GEOGRAPHIC MAP

MID -I977

PUERTO RICO

w

Figure 5. TELENET Network Map

Section 2.1.2.4 TECHNICAL PROGRESS

2.1.2.4 SYSTEM RELIABILITY AND BACKUP

System reliability has been very good after the installation of the new
memory and file/tape hardware. There have been a number of problems as detailed
earlier with the disk system and TYtlNET that have caused more crashes and dropped
lines than normal. Also in the process of experimenting with speeding up our
memory configuration, we have caused some unreliability. The table below shows
monthly downtimes for the past year.

1977 1978
NAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR

CRASHES
Hardware 12 27 8 18 6 6 14 6 6 5 2 4
Software 0 0 4 4 2 13 4 10 6 3
Environmental 1 2 2 2 2 0 0 1111 4
Unknown Cause 0 2 3 2 3 5 6 5 4 7 3 2

DOWNTIPIE (Hrs)
Unscheduled 30 70 34 47 19 19 45 20 17 25 13 15
Scheduled 41 73 25 83 61 44 31 30 23 15 28 31

TABLE 1. System Reliability by Month

In May and June we experienced a substantially higher number of hardware
crashes which we feel resulted from the system being overheated during an air
conditioning failure in mid-play. Ultimately an intermittently shorting backplane
wire was found as well as several intermittent arithmetic unit failures. During
late July and August we worked on system hardware and software changes
preparatory to the installation of the additional 256K of memory and the new
file/tape system hardware. This increased system downtime and unreliability as
well. Infant mortality problems with the new hardware (AMPEX memory especially),
caused a number of crashes in August, September, and October. The high number of
"Unknown" crashes until recently are the result of a number of factors which were
hard to separate or caused the system to fail in ways that we couldn't
reconstruct what happened. We feel these resulted from the TYPINET protocol
problem mentioned earlier, a race condition between the AMPEX and DEC memories,
disk controller problems, and software bugs. Between September and late October
we worked on organizing and enhancing system diagnostic capabilities to support
the new hardware. This required increased downtime.

2.1.2.5 SOFTWARE EXPORT

Over the past year we have continued to investigate alternatives for
software export. The following reports on several of these areas, including 1)
the availability of small POPlO-like machines, 2) progress in developing the
MAINSAIL language, and 31 an investigation of possibilities for writing a MYCIN-
like program using an algorithmic language.

J. Lederberg & E. Feigenbaum 22

TECHNICAL PROGRESS Section 2.1.2.5

SPIALL POPlO-LIKE MACHINES

Early this calendar year DEC announced a new small machine designated the
2020. This machine approximates the "small PDP-10" machine we had discussed in
last year's report. It allows up to 512K of memory, 2 RP-06 disk drive, 2 tape
drives, a printer, and runs DEC's TOPS-20 operating system. Prices range from
$150K for a 128K word machine to 6375K for a 512K word machine with two disk
drive, tapes, and a printer. The unloaded performance of this machine appears to
be in the range of a KA-10 but only preliminary benchmarks have been run. Lynch
at SRI has run a simple LISP test program on a range of machines. His test
creates a large list, randomizes it, and then sorts it. Using a KA-10 with 512K
of memory as a reference, the performance of various PDP-10 systems is shown in
the following table.

KA-10 KA-10 2020 KI-10 KL-1090T
Function 256K 512K 512K 512K 1024K

Build List 0.94 1.00 1.20 1.79 5.86
Rearrange list 0.92 1.00 1.13 1.64 5.20
Sort List 0.79 1.00 0.89 1.65 4.56

This test indicates that the 2020 performs at about the same level as the
KA-10 for a single user. These data do not give a complete picture of
performance under increasing load, however, and do not fully reflect the
intrinsically slow arithmetic performance of the 2020.

We have attempted to run benchmarks of the CONGEN and MYCIN programs to
compare these machines. We ran squarely into a compatibility problem however.
We prepared the two benchmarks, ran them on our KI-TENEX system, checked to see
that they would run on TOPS-20 using SRI’s 1090T system, and asked DEC to run
them on the 2020. The benchmarks failed to execute because of some system call
changes DEC had just made to the newest release of TOPS-20 running on the 2020.
We are just now getting access to a machine running that version of TOPS-20 and
hope to fix the incompatibility to complete the benchmarks. This experience
reinforces our belief that increasing incompatibilities will show up between
TENEX and TOPS-20 that will make software transfer difficult.

We have had a number of contacts from outside users interested particularly
in the chemistry AI programs. Such a machine would represent a good solution for
such groups to gain access to the programs, maintain the necessary security for
proprietary data storage, and stay abreast of new developments. This type of
approach is also attractive for providing needed capacity expansion in small
increments within the AIM community (e.g., for more extensive testing of the
MYCIN or INTERNIST programs) while maintaining general software compatibility.
Remote location of such machines within the community may also offer significant
advantages for human interfaces since terminal handling can be clone locally
thereby supporting higher speed lines and improved echo interactions for
recognition, etc.

23 J. Lederberg C E. Feigenbaua

Section 2.1.2.5 TECHNICAL PROGRESS

MAINSAIL

During this past year we have concentrated on six areas:

1) Implementations
2) Runtime design
3) Language design
4) Compiler design
5) Documentation
61 Emulation research

We have not yet extensively distributed MAINSAIL since it is still undergoing
development based on our experiences with it locally. We have continued to
receive many inquiries concerning the progress of our work, with several.projects
considering using MAINSAIL when it becomes available.

At present our major concern is MAINSAIL’s efficiency in a small address
space; in particular, the compiler cannot yet run on a PDP-11. Though it appears
that computer technology is moving towards large address.spaces, existing
machines with 32K-word address spaces will persist for many years, and many
people have indicated an interest in using FlAINSAIL on such machines. The
difficulty is that MAINSAIL provides features uhich are not easily supported when
memory is scarce. Over the past year we have gained a better understanding of
MAINSAIL’s resource requirements, and have taken steps to reduce its implicit use
of memory.

Implementations

We have developed five implementations for two computers: TOPS-10 and TENEX
for the PDP-10; and RT-11, RSX-llfl and UNIX for the PDP-11. The last two were
developed during the past year. The others have received varying amounts of bug
fixes and updates. The TENEX version has been in use for about two years, and
the RT-11 version for about a year. The TOPS-10 version has been used to a
lesser extent for about a year. Programs have been run on RSX-llll and UNIX, but
these implementations are not complete.

No implementation is in general use; in some cases they have primarily
served to insure that the runtime design is sufficiently flexible. Each new
implementation has revealed deficiencies in the design which have since been
corrected. We will need to implement MAINSAiL on some non-DEC machines before we
can get an unbiased assessment of the difficulty of creating new implementations.

Runtime Design

A new runtime system is now under implementation. It is oriented towards
execution efficiency and less memory utilization since these are the problems
with the current PDP-11 implementations.

A major savings has been made with regard to string constants. In the
previous implementation, the text of string constants was copied into string
space uhere it remained throughout execution. Also, the string-constant
descriptors were allocated in the data sections, which remained in memory as
well. In the new implementation, the string-constant text remains in the control

J. Lederberg & E. Feigenbaum 24

TECHNICAL PROGRESS Section 2.1.2.5

section, so that it is swapped out of memory along with the control section.
String-constant descriptors are created each time a string constant is used.
This usually requires that the text for a string constant be copied into string
space upon each use. The overall result is that string constants do not tie up
memory as in the previous implementation, but more time may be spent repeatedly
copying string constant text into string space. This could also lead to more
string "garbage" collections.

The implementation of modules in terms of control sections, data sections,
and descriptor sections has been altered to save memory. Procedure call, entry,
exit and return have been redesigned to save code and time. The amount of code
executed for i/o has been decreased. A new approach to the use of "anonymous"
modules has been implemented, and the manner in which modules obtain linkage to
one another has changed.

The previous implementation required that every module reside in a separate
file which is opened and closed during execution in order to access the module's
code. The new implementation provides "runtime libraries" which are files
containing any number of modules. Each runtime library remains open throughout
execution. There will be a standard runtime library containing the system
modules, and another containing the compiler modules. The programmer may also
contribute runtime libraries. Single-module files remain as before.

The size of the "kernel" module (which is always resident) has been
decreased. There is more reliance on incremental initialization of arrays,
string space, string constants, class descriptors, module pointers and module
descriptors. This allows some code to be moved out of the kernel into separate
modules.

The modules which make up the runtime system have been reorganized to
decrease the number of costly inter-module calls. Each module is relatively more
self-contained. In the previous irnplernentation, many calls to system procedures
resulted in a chain of intermodule references which resulted in thrashing on the
PDP-Il. In most cases a call to a system procedure now requires at most a single
system module.

A preliminary version of a debugging module has been written and utilized
to some extent.

Language Design

There have been some changes to the language, primarily to support the new
runtime implementation.

OWN arrays are no longer handled any differently than other OWN variables.
An OWN array's allocation is now under programmer control. An OWN array's
declaration may no longer include initialization values. Instead, an INIT
statement is provided which can initialize any array with constant values.

To reduce the number of intermodule calls, and thus the amount of potential
suapping and the extra code executed for the calls, the concept of "compiletime
libraries" has been introduced. A compiletime library is a file containing
procedure bodies that are to be "compiled into" a number of different modules

25 J. Lederberg & E. Feigenbaum

